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Abstract
The multizone approach to steady-state airflow problems models a building as a network of discrete

mass flow paths. A nodal formulation of the problem writes the governing equations in terms of the
unknown pressures at the points where the flow paths connect. This paper proves conditions under which
the nodal equations yield symmetric positive-definite matrices, guaranteeing a unique solution to the flow
network. It also establishes relaxed conditions under which a nodal airflow system yields asymmetric
matrices with positive eigenvalues, guaranteeing at least one solution.

Properly exploiting the system properties greatly reduces the cost of numerical solution. Thus, multi-
zone airflow programs such as Contam and Comis depend on symmetric positive-definite systems. However,
the background literature neglects or simplifies the underlying assumptions, does not assert existence and
uniqueness, and even contains factual errors. This paper corrects those errors, states the implicit assump-
tions made in the programs, and discusses implications for modelers and programmers.
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Nomenclature
Physical quantities we work per unit mass of air done by flow element e

fe
i-j net mass flow through flow element e, ze

i absolute height of flow element e connection
positive from zone i to zone j to zone i

g gravity acceleration zi absolute height of zone i reference level
ṁi-j net mass flow through all elements connecting

zones i and j, positive from i to j Numerical quantities
n count of variable-pressure nodes in the network J Jacobian matrix of residual function derivatives
N count of all nodes in the network, n < N r vector of residual errors in nonlinear system
pe

i pressure in zone i, at connection to x vector of independent variables
flow element e

pi pressure in zone i, at zone reference level Notation
∆pe

i-j pressure drop, across flow element e, xi element i of vector x
from zone i to zone j Ai,j element in row i and column j of matrix A

∆pe
L mechanical energy lost by dissipation x[k] vector x at iteration k

in flow element e, on pressure basis r̂[k] affine model of r at iteration k
ρe density of air in flow element e f{x} function of x
ρe

i density of air in zone i, at connection to
flow element e

1. Introduction
Multizone airflow models idealize a building as a network of discrete flow elements such as

doors, cracks, and ductwork. The flow elements connect at nodes, which represent either static
zones such as rooms, or points where two elements meet, such as duct junctions. The governing
equations represent: (1) pressure–flow relations in the flow elements, (2) mass conservation at the
nodes, and (3) hydrostatic pressure variations in the zones.

A nodal formulation of the problem makes the node reference pressures the independent vari-
ables, calculating the hydrostatic effects and flows accordingly. The nodal formulation dominates
among multizone airflow simulation programs such as Contam [Wal97], Comis [Feu99], Esp
[Cla90], and Mix [Li00]. These programs solve the airflow network by adjusting the reference
pressures in order to achieve mass balance. Typically they use variations on the well-known Newton–
Raphson algorithm, adjusting the reference pressures simultaneously based on affine (linearized)
models of the airflow network.

If linearizing the system always produces symmetric, positive-definite matrices, it allows con-
siderable implementation efficiencies. Symmetry reduces, by almost half, the cost of storing and
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factoring the matrix. The positive-definite property guarantees its nonsingularity, and further sim-
plifies the factorization. More important, an airflow system with these properties always has a
unique solution, which may always be found using damped Newton–Raphson iteration.

Despite the centrality of symmetric positive-definite systems to programs such as Comis and
Contam, only a few sources treat the mathematical properties of nodal airflow systems in any detail
[Axl89a], [Wal89a], [Cla90], [Her92], [Wal97]. However, they tend to neglect or oversimplify
the conditions that guarantee these properties. Even those papers that provide greater detail and
rigor [Axl87], [Gro90], [Hag91] omit at least one of the underlying assumptions, and none shows
that symmetric positive-definite matrices guarantee a unique solution to the nonlinear problem.
Arguments for the existence and uniqueness of solutions to contaminant dispersal systems [Axl89b]
do adapt to airflow systems, but only under the same conditions proved here.

This paper shows that the following conditions—all explicit or implicit assumptions of multizone
airflow programs such as Contam and Comis—ensure that a steady-state nodal airflow system
produces symmetric positive-definite matrices when linearized:
(1) Every flow element model relates the steady-state mass flow through the element to the pressure

drop across it.
(2) The parallel flow elements linking any two zones combine such that increasing the reference

pressure in one zone makes the net outflow to the connected zone more positive, or at least
leaves it unchanged. Call these positive and nonnegative responses, respectively.

(3) Every zone of unknown pressure connects to a zone of known pressure through a series of such
net flow paths, all with positive responses. Adding nonnegative-response paths to such a system
does not disturb its properties.

(4) Within a zone, the pressure varies hydrostatically; however, the change of pressure with height
does not depend on the zone’s reference pressure.

(5) After initialization, the zone density at each element connection does not change with the zone
reference pressure.

(6) The zone temperatures and temperature distributions do not vary with the pressures or flows.
(7) The element pressure–flow curves and zone hydrostatic relations have continuous, bounded first

derivatives with respect to the zone reference pressures.
This paper also shows that relaxing conditions 1, 4, 5, and 6 results in asymmetric but non-

singular matrices, and a flow network with at least one solution. None of the literature cited above
contains this result, which pertains directly to coupled thermal-flow systems.

Section 2 characterizes the flow element and zone models used to assemble steady-state nodal
airflow networks. Section 3 gives some numerical background, and Section 4 derives the important
network properties. Finally, Section 5 discusses modeling implications of the nodal formulation.
This paper does not treat other formulations, such as: (1) loop methods [Wra93]; (2) symbolic and
input-output-free formulations [Bri93], [Nat94]; or (3) dynamic airflow models [Tuo95].

2. Airflow Network Background
This section describes the governing equations for flow elements and zones, then shows how a

nodal formulation of the airflow network assembles the path and zone models into a complete system
description.

2.1. Flow elements. Multizone models relate the flow through each element to the pressure and
density of air in the zones it connects. Suppose element e connects zones i and j, and define fe

i-j as
the net mass flow through e, positive for net flow from zone i to zone j, and negative for flow in the
opposite direction. A bidirectional element sums its two opposing flows to find fe

i-j .
In a nodal formulation, the flow model finds fe

i-j as a function of the pressures and densities at
its terminals:

fe
i-j = fe

i-j{pe
i , pe

j , ρe
i , ρe

j} , (2.1)

where pe
i and ρe

i give the pressure and density of the air in zone i, at the point where element e
connects to the zone.
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Each flow element substitutes its own relations for Equation 2.1. A typical model defines the flow
in terms of the mechanical energy lost in the element due to viscous and turbulent dissipation. The
“lost” energy, expressed on a pressure basis as ∆pL, re-appears as thermal energy in the downstream
fluid. For example, the common orifice model sets fe

i-j = CdA
√

2ρe∆pe
L for positive flows. For

standard flow models, see [Feu92], [Wal97], [Feu99].
A steady-state mechanical energy balance relates ∆pe

L to the connection pressures. Neglecting
heat transfer and changes in kinetic energy,

pe
i + ρegze

i + we = pe
j + ρegze

j + ∆pe
L , (2.2)

where: (1) ze
i gives the absolute height of the element’s connection to zone i, measured from some

global reference level; (2) we gives the work per unit mass done on the fluid by an active element
such as a fan; and (3) ρe gives the density of air passing through the element. For net flow from
zone j to zone i, fe

i-j < 0 and ∆pe
L < 0.

The flow element model, Equation 2.1, incorporates both the mechanical energy balance and the
relation between ∆pe

L and the flow. It also specifies the path density, ρe. Since the element transports
air between the zones, typically ρe varies between ρe

i and ρe
j , with the exact value depending on the

flow velocity.

2.2. Zones. In the nodal formulation, a zone model relates the pressure and density at the element
connections to the zone’s reference pressure. Pressure variations within a zone result from hydrostatic
and wind effects only [Wal97], [Feu99]. Unlike flow elements, zones have no associated energy
losses; this includes heat transfer, since the space temperatures are (fixed) model parameters. Thus,
the flow models must account for any dissipation associated with discharge from a flow element into
a zone.

The volume of a zone does not affect the airflow system. Therefore this paper treats nodes,
where flow elements connect directly, as volumeless zones.

Let pi denote the reference pressure of zone i, measured at some absolute height zi. Then the
pressure and density at the connection to element e depend on pi, on the heights zi and ze

i , and
on the assumed temperature and wind profiles in the zone. Of these, the user specifies all but the
zone reference pressure. Hence, in terms of variables controlled by the nodal solution algorithm, the
element connection pressure and density vary with the reference pressure only:

pe
i = pe

i{pi} and ρe
i = ρe

i{pi} . (2.3a, b)

Zone models can accomodate temperature and density variations throughout the height of the
space. However, a common zone idealization assumes a uniform zone density, ρi, given by the ideal
gas law at the reference pressure. Then

pe
i = pi − ρig(ze

i − zi) and ρe
i = ρi =

pi

RairTi
, (2.4a, b)

where: (1) the gas constant for dry air Rair = 287 N·m/kg·K; and (2) Ti gives the absolute tem-
perature of the zone. For this steady-state model, any contribution due to wind would appear as a
constant term on the right side of Equation 2.4a.

2.3. Airflow networks. Consider an airflow system comprising N zones. Of these, the problem
statement specifies the pressure of at least one zone—usually the ambient pressure of the building’s
surroundings. Thus the network has n < N variable-pressure zones. The nodal formulation treats
these n unknown reference pressures as the independent variables. For convenience, number the
zones to make pi a problem variable for 1 ≤ i ≤ n, and a fixed parameter for n+1 ≤ i ≤ N .

Any two zones may share zero, one, or more flow paths. Define the net interzonal mass flow
carried by these parallel paths as

ṁi-j =
∑

l

f l
i-j , (2.5)
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where index l extends over every element connecting zones i and j. If the zones share no flow
elements, ṁi-j = 0. By definition, ṁi-i = 0.

At steady state, mass conservation requires
∑N

k=1 ṁi-k = 0. That is, the flows leaving zone
i must sum to zero (here, as elsewhere, a positive flow entering a zone counts as a negative flow
leaving the zone).

Mass conservation applies to all zones, 1 ≤ i ≤ N . However, numerical solution demands only
n equations in the n unknown pressures. Therefore the nodal formulation defines residual equations
only for the variable-pressure zones:

ri =
N

∑

k=1

ṁi-k , 1 ≤ i ≤ n . (2.6)

The solution scheme adjusts the reference pressures to set the vector r = 0, i.e., so that the flows
leaving each variable-pressure zone sum to zero.

3. Numerical Background
Most multizone airflow programs use some variation on Newton–Raphson’s method to solve

Equation 2.6 [Feu92]. Newton–Raphson generates a series of matrices containing the derivatives
of the residual equations. This section shows that: (1) when the nonlinear system always produces
nonsingular matrices, it must have a solution; and (2) when those matrices are always symmetric
positive-definite, the system has a unique solution. Guarantees of symmetry and invertibility also
reduce the cost of finding a solution.

3.1. Newton–Raphson. Consider a system of nonlinear residual equations, r{x} = 0. In a nodal
airflow system, r describes mass conservation in the variable-pressure zones, while x represents the
vector of pressures, p1 through pn. Here, x replaces p as the independent variable, both to match
conventional linear algebra notation, and to stress that these results apply to any system of nonlinear
equations.

Newton–Raphson’s method seeks a solution by iteratively linearizing the residuals, and jumping
to the solution of each linearized system [Den96 §5.1]. The linearization step forms a first-order
Taylor series of each residual about a current guess, x[k], and collects them into the affine model

r̂[k] = r[k] + J[k](x− x[k]) , (3.1)

where r[k] = r{x[k]} gives the residuals evaluated at x[k]. The Jacobian matrix, J[k], evaluates the
derivatives of the residuals, again at x[k], such that the ith row and jth column has a component

Ji,j =
∂ri

∂xj
. (3.2)

Note that Equation 2.6 allows assembly of the Jacobian by directly summing the derivatives of the
flow element relations [Axl89a].

Solving for r̂[k] = 0 gives the Newton–Raphson solution, xNR
[k+1] = x[k] − J−1

[k] r[k]. For efficiency,
matrix factorization replaces inversion of the Jacobian. Still, factorization remains a costly opera-
tion, requiring order-n3 floating-point operations [Den96 §3.2]. Furthermore, the resulting iteration
may not converge to a solution, and general techniques for stabilizing the method increase the
computational burden [Den96 §6].

Reducing the cost of numerical solution depends on exploiting properties of the Jacobian matrix.
Two important properties, nonsingularity and symmetry, allow significant impementation efficiences.

3.2. Nonsingular. If the residual equations yield a nonsingular Jacobian when linearized about
any x[k], then they must have a solution. For proof, consider the “sum of squares” cost function,
rTr. The cost function gradient, 2J[k]

Tr[k], gives a search direction in which a change in x reduces
the cost function. A zero gradient at x[k] implies either: (1) r[k] = 0, so that x[k] solves the nonlinear
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system; or (2) J[k]
Tr[k] = 0, making J[k] singular by definition. Therefore, if the residual equations

always yield a nonsingular Jacobian, then any x[k] either solves the system, or gives a nonzero search
direction that reduces the magnitude of the residual vector [Den96 §6.5].

A nonsingular Jacobian also ensures that the local model of the residuals, r̂[k], has a solution.
Therefore, local to any x[k], the Newton–Raphson direction reduces every residual magnitude toward
zero. Barring numeric effects, a series of line searches can always solve such a system, although
more complicated methods may speed convergence [Den96 §§6.3–6.4]. Despite this fact, building
airflow programs have only recently addressed known convergence problems using general line search
techniques [Lor00].

3.3. Symmetric. A square symmetric matrix, A, has Ai,j = Aj,i. Symmetry allows improved stor-
age [Gro90] and factorization routines [Den96 §3.2], reducing the associated memory and floating-
point operation counts by about half. For the sparsity patterns typical of building airflow systems,
a skyline storage scheme has proved useful [Gro90], [Her92].

3.4. Positive-definite. By definition, a symmetric positive-definite matrix has xTAx > 0 for
any vector x 6= 0. It follows that A has all positive eigenvalues, and hence always has an inverse
[Str88 §6.2]. Furthermore, Gaussian elimination on A always finds positive pivots, even without
row exchanges. This allows further simplification of the factorization routine.

If a nonlinear system always yields symmetric positive-definite Jacobians, then it has a unique
solution. Consider an arbitrary point x∗ + s, offset by nonzero vector s from a solution at x∗. To
find r{x∗ + s}, integrate the residuals along the line segment x∗ + ts between the two points. With
r = 0 at t = 0, it follows that r{x∗ + s} =

∫ 1
0 (J{t}s) dt [Den96 §4.1]. Since sTJ{t}s > 0 for all t,

the inner product

sTr{x∗ + s} =
∫ 1

0

(

sTJ{t}s
)

dt > 0 . (3.3)

With s 6= 0, the result sTr > 0 implies r{x∗ + s} 6= 0, making x∗ the only solution to the residual
equations.

4. System Properties
Most multizone airflow programs assume symmetric positive-definite Jacobians, in order to

reduce the computational burden of solution. This section establishes conditions under which a
nodal formulation of an airflow network problem actually does yield symmetric positive-definite
matrices. It also shows a new result, in which less restricted flow systems produce asymmetric,
nonsingular matrices.

These system properties depend on finding nonpositive off-diagonals, and sufficiently positive
diagonals, in the Jacobian matrix. Therefore this section begins by examining individual Jacobian
elements, then shows how they lead to matrices with the desired properties. For notational conve-
nience, this section drops the iteration subscript [k]; all results apply to any J[k] implicitly. It also
assumes a Jacobian exists at any x[k]. In other words, it assumes that the residual functions have
continuous, bounded derivatives everywhere (condition 7 in the Introduction).

4.1. Jacobian elements. From Equations 2.6 and 3.2, Ji,j =
∑N

k=1

(

∂ṁi-k
∂pj

)

. First consider i 6= j.
For these off-diagonal elements, ṁi-k can vary with pj only when k = j. That is, the off-diagonal
elements represent links between variable-pressure zones. Thus

Ji,j =
∂ṁi-j

∂pj
= −∂ṁj-i

∂pj
for i 6= j . (4.1)

The second result follows since ṁi-j = −ṁj-i in a steady-state flow system. If no flow path connects
zones i and j, then ṁi-j = 0 and Ji,j = 0.

On the diagonal, Ji,i =
∑N

k=1

(

∂ṁi-k
∂pi

)

. Breaking up the summation to distinguish between
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connections to zones of fixed and variable pressure, and substituting Equation 4.1, gives

Ji,i =
N

∑

k=n+1

∂ṁi-k

∂pi
−

n
∑

i6=k=1

Jk,i . (4.2)

That is, the diagonal adds derivatives of any outflows to fixed-pressure zones, and subtracts those
due to inflows from variable-pressure zones (given by the off-diagonals in the same column). Again,
inflows count as negative outflows, and vice versa.

Both Equations 4.1 and 4.2 contain partial derivatives of the net interzonal mass flow leaving a
zone, with respect to its reference pressure. From Equation 2.5,

∂ṁi-j

∂pi
=

∑

l

∂f l
i-j

∂pi
=

∑

l

(

∂f l
i-j

∂pl
i

∂pl
i

∂pi
+

∂f l
i-j

∂ρl
i

∂ρl
i

∂pi

)

, (4.3)

where index l extends over every element connecting zones i and j. The second summation, which
follows from Equations 2.1 and 2.3, shows that hydrostatic effects in the zone modify the contribu-
tions of the flow elements—a point ignored in the building airflow literature.

4.2. Sign of Jacobian elements. The partial derivatives of Equation 4.3 determine the sign of
the ∂ṁi-j/∂pi. First, note that most zone models will have ∂pe

i /∂pi ≥ 0 and ∂ρe
i /∂pi ≥ 0, because

the connection pressure and density should not decrease as the reference pressure increases. By
similar reasoning, a typical flow element should have ∂fe

i-j/∂ρe
i ≥ 0. Therefore ṁi-j should tend

to increase with pi, provided the outflow has a positive derivative with respect to the connection
pressure.

Most real flow components do have ∂fe
i-j/∂pe

i > 0. That is, they give more positive outflows
from zone i as the connection pressure pe

i increases. The energy balance, Equation 2.2, suggests
why: as pe

i increases, the conversion of mechanical to thermal energy in element e, given by ∆pe
L,

becomes more positive. This implies more positive flow out of zone i (however, Section 5 gives some
counterexamples). Thus parallel combinations of flow elements connecting two zones tend to have
∂ṁi-j/∂pi > 0.

Call the aggregate behavior of the parallel paths between zones i and j a positive response if
increasing pi always makes the net outflow to zone j more positive, ∂ṁi-j/∂pi > 0. Similarly, call
the response nonnegative if increasing the reference pressure at least leaves the outflow unchanged,
∂ṁi-j/∂pi ≥ 0.

For networks composed entirely of paths with positive responses (condition 2), Equations 4.1
and 4.2 imply

Ji,j ≤ 0 and Ji,i ≥ −
n

∑

i 6=k=1

Jk,i > 0 . (4.4a, b)

Strict equality in the second relation holds when variable-pressure zone i does not connect to a zone
of constant pressure.

If a network satisfies Inequalities 4.4, then adding any number of flow paths with nonnegative
responses does not affect those relations. Conditions 2 and 3 reflect this fact. In practical terms,
this means that adding constant-flow elements, with their zero derivatives, to a flow system does
not affect the existence and uniqueness of a solution (though it does change the solution itself).

Note that Inequality 4.4b gives a more general result than the assertion usually found in dis-
cussions of airflow systems. That row-wise result, Ji,i ≥

∑

k 6=i |Ji,k|, assumes symmetry.

4.3. Nonsingularity. A steady-state nodal airflow system composed only of positive-response
paths yields a nonsingular Jacobian provided every variable-pressure zone connects to one of fixed
pressure via a series of such paths. Conversely, lacking any connection to a fixed-pressure zone, the
system is singular. Adding any number of nonnegative-response paths to such a system does not
alter these properties.

First consider a system with no connection to a fixed-pressure zone. By Equation 4.2, the
Jacobian rows sum to zero, making the matrix singular.
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On the other hand, suppose the system has at least one positive-response connection to a
fixed-pressure zone. To prove J has full rank, consider its eigenvalues, λ. Since JT and J have
the same eigenvalues, JTv = λv for some v 6= 0 [Str88 §5.1]. The ith row of this equation gives
∑n

k=1 vkJk,i = λvi. Let i select the component of v with largest absolute value. If the eigenvector
has multiple elements with the same maximal value, then pick i such that zone i connects either to
a fixed-pressure zone, or to a variable-pressure zone j with |vj | < |vi|. Such a zone must exist in the
assumed system.

With this choice of i, vk
vi
≤ 1 for all variable-pressure zones k. Then Inequalities 4.4 give

λ =
n

∑

k=1

vk

vi
Jk,i ≥

n
∑

k=1

Jk,i ≥ 0 . (4.5)

Equality cannot hold in both relations simultaneously. If zone i connects to a fixed-pressure zone,
then λ ≥

∑n
k=1 Jk,i > 0. Otherwise, some j 6= i has vj

vi
Jj,i > Jj,i, and hence λ >

∑n
k=1 Jk,i = 0.

Thus, for every eigenvector of JT, some choice of i shows λ > 0. Therefore the system matrix
has positive eigenvalues, and cannot be singular. Adding nonnegative-response paths to the network
does not affect these results, because at worst such paths can only contribute zero derivatives when
assembling the Jacobian.

4.4. Comments on nonsingularity. As discussed in Section 3, if the system has a nonsingular
Jacobian everywhere (i.e., for any choice of reference pressures), then it must have at least one
solution. Note that the proof does not rely on symmetry. Therefore if a nodal system has continuous,
bounded derivatives (condition 7) that satisfy Inequalities 4.4 (conditions 2 and 3), it has a solution.
It need not meet any of conditions 1, 4, 5, or 6.

The conditions used here to prove the Jacobian is nonsingular also satisfy the “weak column
sum criterion” needed to ensure that both the Jacobi and Gauss-Seidel methods can solve the linear
system at each Newton–Raphson iteration [Sto93 §8.2]. However, numerical tests indicate the
convergence may be slow [Her92 §6.3].

4.5. Symmetry. Symmetry requires Ji,j = Jj,i, or, using Equation 4.1, ∂ṁi-j/∂pi = −∂ṁi-j/∂pj .
From Equation 4.3, this requires

∑

l

(

∂f l
i-j

∂pl
i

∂pl
i

∂pi
+

∂f l
i-j

∂ρl
i

∂ρl
i

∂pi

)

= −
∑

l

(

∂f l
i-j

∂pl
j

∂pl
j

∂pj
+

∂f l
i-j

∂ρl
j

∂ρl
j

∂pj

)

(4.6)

for every combination of variable-pressure zones i and j in the system.
To force Equation 4.6 to hold for any parallel combination of flow paths, it must hold for each

path. Furthermore it must hold regardless of how the zone model changes pe
i and ρe

i with changes
to pi. Therefore symmetry requires

∂fe
i-j

∂pe
i

= −
∂fe

i-j

∂pe
j

, (4.7)

so that the flow elements must calculate fe
i-j as a function of the pressure drop ∆pe

i-j = pe
i −pe

j across
the element connections (condition 1). That is, symmetry requires flow models of the form

fe
i-j = fe

i-j{∆pe
i-j , ρe

i , ρe
j} , (4.8)

rather than of the form given by Equation 2.1.
Even with flow a function of pressure drop, Equation 4.6 still requires

∂pe
i

∂pi
= 1 and

∂ρe
i

∂pi
= 0 (4.9a, b)

for symmetry. According to Equation 4.9a, any change to the zone reference pressure must produce
an identical change at the flow element connection (condition 4). Equation 4.9b states that the zone
density at each element connection cannot change with the reference pressure (condition 5). Note
that while the latter relation prohibits updating the zone densities during the Newton–Raphson
search, it does permit initializing them based on the initial reference pressures.
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negative or infinite derivatives.

4.6. Positive-definite. Under the conditions described above, the airflow system matrix has posi-
tive eigenvalues. Therefore a symmetric Jacobian is also positive-definite [Str88 §6.2]. Then by the
discussion of Section 3, it may be factored without pivoting, and the nonlinear system has a unique
solution.

5. Modeling Implications
This section discusses the impact on models of the conditions required for a nodal airflow

network to yield symmetric positive-definite system matrices. The most restrictive conditions affect
the flow element models, on which multizone airflow programs such as Comis and Contam chiefly
rely in order to provide the user with rich modeling environments. Other requirements apply to the
zone models.

5.1. Pressure drop. According to Equation 4.8, a multizone airflow program must calculate the
flow through each element as a function of the pressure drop across it, in order to produce symmetric
systems. One important flow component, the duct T-junction, does not follow this pattern. Modeled
as a three-port flow element, the duct junction would break symmetry. Of course, a multizone
program can represent a T-junction as a zone, and try to account for mechanical energy losses in
the adjoining duct elements. However, this approach misses the fact that the dissipated energy in
each leg of a junction depends on the flows in its other legs [McQ88 §11.8].

Large flow elements such as doors and windows do not connect to a zone at a single height,
as assumed in Equation 2.2. Therefore they do not respond to a single pressure drop. However,
because pressure and density variations over the height of the connection do not depend on the zone
reference pressure (conditions 4 and 5), these models do not disturb the symmetric positive-definite
properties.

5.2. Positive derivatives. Equations 4.3, 4.4a, and 4.9 require that increasing the pressure drop
across a flow element should increase the flow in the direction of the pressure drop (or leave it
unchanged for a nonnegative response).

As noted in the discussion above, most flow elements have ∂fe
i-j/∂∆pe

i-j > 0. However, not
every real flow element has monotone increasing flow over all pressure drops. Figure 5.1 shows
an important exception, a fan, as usually presented—with the pressure rise from inlet to outlet a
function of the flow in the same direction. Figure 5.2 shows the same data in the form fe

i-j{pe
i − pe

j},
with the fan inlet at zone i. The fan, an active element with we > 0, gives negative pressure drops
in the flow direction.

The curve in Figure 5.2 has a negative slope at low flows. This creates a range of ∆pe
i-j

with multiple associated flows—impossible to represent with a steady-state model of the form of
Equation 4.8. Furthermore the curve has an infinite derivative at the point of maximum pressure
rise. Even though a properly-sized fan should not operate in this problematic region [McQ88 §11.2],
a multizone solution algorithm might evaluate the fan model there, during its iterative search for
the steady-state operating point. To avoid this, the fan model should enforce a positive derivative
over the entire range of pressures, for example by linear extrapolation outside the region of expected
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operation [Feu99].
While less common, passive flow elements also can give negative slopes in the pressure–flow

curve. A self-regulating vent, for example, adjusts its flow area in order to deliver nearly constant
flow under all conditions. Then, because larger pressure drops tend to increase infiltration, some
self-regulating devices compensate further, by reducing the flow as the pressure drop grows larger
[Kno91]. This behavior presents no problem for the flow model—every ∆pe

i-j gives a unique flow—
but the negative slope may produce an indefinite system, unless the vent operates in parallel with
other flow elements of sufficiently positive slope (see Equation 4.3).

5.3. Continuous derivatives. The existence and uniqueness proofs of Section 3 assume a non-
singular Jacobian exists everywhere. This means the equations defining the flow models must have
bounded, continuous derivatives with respect to the zone pressures. Of course, continuous derivatives
imply continuous pressure–flow curves.

Piecewise flow relations, in particular, can violate either condition. For example, the Darcy-
Weisbach duct model has a discontinuity at the transition between laminar and turbulent flow
[McQ88 §11.7]. Less obviously, discontinuity may arise from a flow element’s density relations.
From Equations 2.1 and 2.2, if an element’s connections have different absolute heights, then it must
make ρe a continuous function of the terminal pressures in order to give a continuous pressure–flow
curve.

Without special attention, even continuous pressure–flow curves can have discontinuous deriva-
tives [Gro90 §4]. This does not, as sometimes stated, cause an asymmetric Jacobian, but rather
makes the Jacobian undefined at certain pressures. The fact that this has not been identified as
a source of problems in Contam and Comis suggests that discontinuous derivatives do not, in
themselves, cause numerical difficulty. In other words, while condition 7 requires continuous first
derivatives, it seems reasonable to suppose that a continuous flow model whose one-sided derivatives
satisfy condition 2 does not jeopardize the existence of a solution.

5.4. Zone models. Equations 4.9 restrict the form of zone models. Strictly speaking, a zone model
should not change the densities at the flow element connections, as the solution algorithm changes
the zone reference pressure (condition 5). Furthermore, the connection pressures should change in
lockstep with the reference pressure (condition 4).

Some multizone programs enforce these relations, by not updating the zone densities during the
Newton–Raphson search for the zone reference pressures. Probably this is an unnecessary precaution.
At room temperature, the zone model given by Equations 2.4 has ∂pe

i /∂pi ≈ 1.00001. Computational
experience with Comis, which updates zone densities if requested by the user, suggests it is safe to
ignore such small deviations from Equations 4.9—that is, to approximate the Jacobian as symmetric.

The zone model of Equations 2.4 also shows that coupling the zone temperatures to the flows, in
violation of condition 6, destroys symmetry. Consequently, coupled thermal systems allow multiple
solutions to the airflow system [Li01].

6. Conclusions
This paper proves that under the conditions listed in the introduction, a nodal airflow network:

(1) yields symmetric positive-definite systems; (2) has a unique solution; (3) produces system matri-
ces with reduced storage and factorization costs; and (4) must be solvable, barring numeric effects,
by descent-based line search methods. Several of these assumptions and system properties have not
been described, or proved rigorously, in the building airflow literature.

The paper also proves that relaxing some of those conditions produces asymmetric, nonsingular
system matrices, guaranteeing at least one solution, and likewise admitting line search methods.

In practice, some of those conditions can be relaxed still further without jeopardizing the numer-
ical solution of the airflow network. The paper describes typical examples of how these restrictions
affect zone and flow element models.
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